
DynJava: Type Safe Dynamic Code Generation in Java

Yutaka Oiwa Hidehiko Masuhara Akinori Yonezawa

University of Tokyo

Abstract

Dynamic code generation is a technique that generates and executes fragments of executable code
during the run-time of an program to reduce the execution time of programs. However, most of cur-
rently available dynamic code generation systems have weakness on high-level language support for
describing dynamic code fragment. Especially, safety of dynamic composition of code fragments is not
sufficiently supported. To solve this, we present a Java-based strongly-typed language for dynamic code
generation. This language gives precise types to dynamic code fragments, to guarantee the type-safety
of dynamically-composed codes.

1 Introduction

Dynamic code generation (DCG) is a technique that generates and executes fragments of executable code
during the run-time of a program [11, 9]. It is useful for reducing execution time of programs, because gen-
erated fragments can be optimized by using run-time values, which are not available at static compilation-
time. Since generated code holds runtime values such as number of an iteration or a condition of a branch
as constants, it may run faster than statically-generated code.

There is three ways to implement DCG. The first is to directly write down a program which generates
native machine instructions on a memory [5, 4]. However, writing a correct program in this approach
is extremely difficult and error prone. The second is to automatically generate a program that generates
an optimized version of a given generic program—so called (run-time) partial evaluation [9, 2]. As this
approach relies on static analysis to determine where to optimize, resulted optimization would be too
conservative. The third is to define a language in which the programmer can write a fragment of dynamic
code as an expression in a high-level language. This approach can solve the problems of the former two
approaches. Our DynJava is based on this approach.

DynJava is an extended language to Java in which the user can write dynamic code fragments in the
syntax that is similar to the Java’s. In addition, dynamic code fragments in DynJava are statically typed,
and type safety of dynamically composed code is statically guaranteed. We devised a type system for
DynJava, and implemented a system that translates DynJava program to a Java program.

2 The DynJava Language

The DynJava language has, in order to generate new classes, a few constructs for combining several parts
of dynamic code fragments together. This section presents a brief overview of DynJava.

2.1 Code fragments and contexts

In DynJava, the user can declare a code specifications to define a dynamic code fragment, whose syntax is
similar to cspec in ‘C [11]. They are combined to generate an anonymous subclass of an abstract class.

To check the type-safety of the code generated by dynamically code compositions described later, the code
specification’s type includes its context information.

A context information of a code specification is very precise in DynJava. It includes following infor-
mation:

Name of the base class (superclass) Because all Java program codes are enclosed in methods of some
classes, there is always a “current class” and its superclass for every statement and every expression.
In an instance method, names of the methods and fields in the current class are visible, and this
can be used as an read-only value of that class type. We call this “context (or environment) is an
instance context.” In the class method, only class methods and class fields are accessible through
simple name, and this is inaccessible. We call this “class context”.

Because current class of dynamically-generated code is anonymous in DynJava, a reference to an
instance of dynamically-generated class is always used as a value of its superclass’s type, whose def-
inition is statically available. We name this “base class”. A context holds the name of the superclass,
with a flag whether the context is instance context or class context.

The base class of an instance context is notated as “extends classname”, and those of an class
context as “static extends classname”.

Variables and fields of current class A variable context holds types of all variables which is visible in
the current scope. In this type system, a variable context also holds all fields which are accessible by
simple names, and by this.name notation.

The entry of the simple name in the variable context is notated as “type name” (ex. “int i” or
“Vector v”). The entry of the field of this is notated as “type this.name”.

Note that if some name is available through this, the name is always accessible through its simple
name. However, type of the name and this.name may be different, as local variable may hide
instance fields and class fields.

If a context has a base class, the type-checker automatically consults the definition of the base class
and expands its fields to the variable context.

Methods and Constructors A method context holds the list of methods and constructors which are de-
fined in or inherited by the current class. For each method, a method context holds 1) the name of
the method, 2) type of the return value, 3) types of the formal parameters, and 4) list of exception
types which may be thrown by the method. For each constructor, context holds 1′) a flag whether
the constructor is defined in current class or in direct superclass, and 3) and 4).

Method entries in a method context are notated as “typer name(type1, type2, . . .) throws exn1,
exn2, . . . ”, where typer is the return type, type1, type2, . . . are the types of the formal param-
eters, and exn1, exn2, . . . are the types of the exceptions which may be thrown. For example,
clone method defined in the Object class in the JDK is notated as “Object clone() throws
CloneNotSupportedException”. For constructor entries, return types are omitted and either
super or this are used in place of name.

As same as variable context entry, entry of methods and constructors which are defined in the super-
class are expanded automatically by the type checker.

Type of return value The type of the return value depends on the type of surrounding method. This infor-
mation is notated as “return t”. The context in which only return statements without argument
can be used is notated “return void”.

Context is allowed to contain no return type specification. Code specification with such context can
not contain any “return” statement in it, but can be used in places whatever type of return value is
required.

break-able Labels A label context holds all labels which is available for use with break or continue
statement. continue-able label is provided by while and for statements, and break-able label
is provided by those and switch statements. In addition to this, those statements without label is
treated to be providing null-label. continue-able label with tag t is notated as continue t, and
break-able label of those as break t. Null-labels are notated simply as continue and break.

Throwable exceptions At each point in the programs, exception context holds a set of exception types
which are handled by either method caller or try-catch clause. For example, at the point of star (�)
in the following program fragment, exceptions of any subclass of the class java.io.IOException ,
ClassNotFoundException can be thrown.

void method_1(int x) throws IOException {
try { � }
catch (ClassNotFoundException e) { . . . }

}

In a program text, this information is notated as “throws e”, where e is the name of the exception
class.

Other information of context There are two miscellaneous states which a context holds. First, “construc-
tor state” means that the current block is used as a body of a constructor, and that some constructor
of the current class or of direct superclass must be explicitly invoked at the top of current block. This
state is notated as “super”. Second, “switch state”, notated as “switch”, means that the current
block is used as a body of a switch statement, and the special labels case i: and default can be
used.

For example, the context specification <int x> specifies contexts where x is bound to a int value,
and <return int> specifies that contexts are methods that return int values.

2.2 Code specifications

DynJava has two kinds of code specifications, statement specifications and expression specifications. Each
of them corresponds to a Java’s statement or expression, respectively. The type of a statement specification
is written as code_spec<Γ>, where Γ is the context on which the body of the specification depends. The
type of an expression specification is written as t exp_spec<Γ>, where t is the type of values generated
by evaluating a generated code fragment from the specification. The type t is called a target type of the
expression statement type.

A code specification begins with a backquote (‘), followed by a context specification and either a
statement or an expression. Statement specifications have the form “‘<context>{body}”, and expression
specifications have the form “‘type<context>(body)”.

Code specifications can have free (unbound) variables, if they are declared in its context specifications.
The following is the examples for code specifications.

‘<String x>{ System.out.println("hello, " + x + "!"); }
‘double<int x>(x + 1.5)

When a code specification is used in a program where a value of some specific code specification type is
required, its context specification and target type can be omitted. For example, in the program below, the
type of the statement specification in line 1 should match to the type of the left-hand side of the assignment,
which is code_spec<int x; return int>. Similarly, the type of the expression specification in line 2
is deduced to double exp_spec<int x>.

1 code_spec<int x; return int> c1 = ‘{ return x; };
2 double exp_spec<int x> c2 = ‘(x + 1.5);

The places where (and how) the type of the specifications can be deduced are following:

1. Right-hand side of assignments (type deduced from left-hand side)

2. Initializers in variable declarations (from the declared type)

3. An argument of return (from the return type of enclosing method)

4. Inside ? : expressions, where above rules applies for the type of ? : expressions (from the deduced
type of the expressions)

2.3 Embedding another code specification

In the body of a code specification, another code specification can be embedded by writing @ followed by
an identifier. The code generated from inner code specification is inlined into the code from outer code
specification. For example, in the code below, compiling c2 will generate the almost the same code as one
generated from c3.

code_spec<String g, x> c1 =
‘{ System.out.println(g + x + "!"); };

code_spec<String g; return void> c2 =
‘{ String x = "Michael"; @c1; return; };

code_spec<String g; return void> c3 =
‘{

String x = "Michael";
System.out.println(g + x + "!");
return;

};

When a code specification is embedded by @, the context specification of inner specification is always
checked against surrounding code and the context of outer specification, to ensure that the composed code
is type safe. In the above example, c1 requires that variables g and x must be bound to type String. The
code surrounding @c1 in c2 provides binding of x. g is not bound by c2 itself, but it requires outer context
to bind g. Therefore, type-checking above code succeeds.

In addition to variables, labels (or break points) can also be “free”. In DynJava, anonymous break
point, which is provided by loop constructs without label, is treated as “null label”. Break and continue
statements may point to labels which are bound outside current code specifications. In the following
program, break in c1 makes the program escape from the for loop in c2.

code_spec<break; int x> c1 =
‘{ if (x == 5) break; }

code_spec<> c2 =
‘{ for(int x = 0; x < 10; x++) {

System.out.print(" " + x);
@c1;

}
};

2.4 Embedding constant primitive values

Primitive values can also be embedded (or “lift”ed), by using $-prefix.

String message = "hello";
code_spec<String x> c1 =

‘{ System.out.println($message + ", " + x + "!"); };
code_spec<return void> c2 =

‘{ String x = "Michael"; @c1; return; };
// print "hello, Michael!" and escape from current method

The expression $message in above program embeds runtime value of the variable message in to the code
specification c1. The values which can be embedded by the $-expression are limited to primitive values
and strings. This reflects a limitation of Java language and Java virtual machine.

2.5 Class specifications

In DynJava, code specifications must be compiled into class to use. In order to generate a class, DynJava
provides class specification constructs which begins with keyword class_spec. A class specification
looks like a class definition that lacks bodies of methods, but its instance acts as a “generator of a new
class”. The code below is a small example of a class specification.

1 // "interface"
2 abstract class Method { abstract void invoke(); }
3
4 class_spec MethodGen extends Method {
5 void invoke(); // this class overrides invoke() in class Method
6 }
7
8 public class Test {
9 public static void main(String[] args) {

10 MethodGen cs = new MethodGen();
11 cs.<void invoke()> = ‘{ System.out.println("Hello"); };
12
13 cs.compile(); // generates class
14
15 Method m = new cs(); // generates instance
16 m.invoke();
17 }
18 }

In the class specifications there is a field for each declared methods.
To define the actual body of the methods, the user assigns code specifications to the fields of class

generator i.e. an instance of a class defined by class_spec). The fields of the class generators are in-
dicated with an extended syntax, e.<method signature>, which appears in line 11 above. These fields
have appropriate types assigned by the type checker. In the example, cs.<void invoke()> has the type
code_spec<extends Method; return void; void invoke()>.

To generate an instance of dynamically-generated class, extended form of new expression, which takes
a class generator rather than class name as an argument is used (see line 15). It returns a reference to
new instance, which is typed to the base type declared in the class specification declaration. If the code
specification is not compiled explicitly, it is automatically compiled at the first call to new.

In addition to above syntax, DynJava allows to create an anonymous class generator inside a method.
If the keyword class_spec is used without class name, and with the variable declaration after declaration
body, It generates an instance of an anonymous class specification directly. Above example can be rewritten
using anonymous class specification as follows:

1 // "interface"
2 abstract class Method { abstract void invoke(); }
3
4 public class Test {
5 public static void main(String[] args) {
6 class_spec extends Method { void invoke(); } cs;
7
8 cs.<void invoke()> = ‘{ System.out.println("Hello"); };
9

10 // cs.compile(); // can be omitted
11 Method m = new cs(); // generates class and instance
12 m.invoke();
13 }
14 }

2.6 Syntactic sugar

Because a notation of context specification is generally very long, and same context specification appears
many time in program, DynJava provides a syntactic sugar. If a context specification contains a context
of another code specification as a subset, the common elements can be abbreviated by a term like @e.
For example, in the program shown in the previous section, the type notation code_spec<@(cs.<void
invoke();>)> represents the type of the code specification in the example. The abbreviation can be used
with other elements, like < @e; int x, y; >.

3 Type System

DynJava statically type-checks each code specification using its context information so that the dynami-
cally composed codes preserves type safety.

3.1 Sub-context relation

Firstly, Sub-context relation between two contexts is defined. Γ′ ≺C Γ reads as “the context Γ′ is sub-
context of Γ” and means that any code specification depending on Γ′ can be embedded in positions that
supplies Γ. The relation is defined as a context pairs that satisfies all of the following conditions:

1. Base class of Γ′ is a superclass of base class of Γ.

2. All names provided in Γ′ are also defined and has the same type in Γ.

3. All methods and constructors in Γ′ are also defined and have the same signatures. Also, a superclass
of each elements in the set of exceptions thrown by the method in Γ′ appears in the set of exceptions
thrown by the corresponding method in Γ.

4. If Γ′ has a return type, Γ also has the same return type.

5. Exceptions declared to be thrown by Γ′ must be subset of those of Γ, considering subclass relations.

6. All labels in Γ′ are defined in Γ. In this rule, request of break in Γ′ may be satisfied by continue
in Γ, and unlabeled break and continue may be satisfied by labeled one.

7. If and only if Γ is in constructor state, Γ′ must be in constructor state.

8. If Γ′ is switch state, Γ must be in switch state.

R; Γ � l : statement list
Γ; ◦ � ‘<R>{l} : code_spec<R>

(TR-CSpec)
R; Γ � e : t

Γ; ◦ � ‘t<R>(e) : t exp_spec<R>
(TR-ESpec)

∆(x) = code_spec<R> R ≺C Γ

Γ;∆ � @x; : statement
(TR-EmbedS)

∆(x) = t exp_spec<R> R ≺C Γ

Γ;∆ � @x : t
(TR-EmbedE)

Γ(x) = t
Γ;∆ � x : t

(TR-VarRef)
∆(x) = t
Γ;∆ � $x : t

(TR-Lift)

Γ;∆ � x : code_spec<R> R ≺C R′

Γ;∆ � x : code_spec<R′>
(TR-Coerce-CS)

Γ;∆ � x : t exp_spec<R> R ≺C R′

Γ;∆ � x : t exp_spec<R′>
(TR-Coerce-ES)

Figure 1: Type judgement rules for DynJava (1): dynamic codes

3.2 Type judgements

A type judgment Γ;∆ � e : t determines that an expression or statement e has type t under current environ-
ment Γ and outer environment ∆.

Dynamic code specifications Firstly, we show the typing rules which relate to dynamic code generation
constructs. Figure 1 shows the typing judgements for ‘, @ and $ constructs. As (Tick-CSpec) and (Tick-
ESpec) rules show, the context of the type of the code specification is used as a current environment for
the body of the specification, which is supposed to supply all name, method, and label bindings, etc. Γ(x)
means the type of name x, which is bound syntactically most recently. In usual Java program, ∆ is always
unavailable, notated as ◦. ∆ is bound to other context by (Tick-CSpec) and (Tick-ESpec), and used by
(Tick-EmbedS), (Tick-EmbedE) and (Tick-Lift).

In rules (TR-Cspec) and (TR-Espec), current context for l and e is bound from the context specification
given in program, and old current context is bound to outer context. Outer context ∆ is referred by rules
(TR-Lift), (TR-EmbedE), (TR-EmbedS) which correspond to $ and @, while normal variable reference
expression refers to Γ by (VarRef). Whenever a code specification is embedded by @, the context of inner
specification is always compared with the current context provided by outer specification by �C , to ensure
that the composition is correct.

For each field of the class_spec, an appropriate type is automatically assigned by the type checker.
In the example in previous section, cs.<void invoke()> has given the type code_spec<extends
Method; return void; void invoke()>.

Statement block Nextly, we show the typing judgement rules for various usual Java constructs. These
rules are approximately a re-implementation of Java’s typing rules, using the concept of extended context
in DynJava. As space is limited, we present only a portion of the typing rules in this paper. Detailed typing
rules will be published elsewhere [10].

Rules in figure 2 are the type judgements for statement block and method body. The first five rules
implements that constructor call may appear only at the top of constructor body, and unless must be there
if superclass constructor without argument is available.

Labels Rules in Figure 3 are for while, break and continue statements. These rules implements the
requirement for existence of enclosing loop constructs with the label environment in Γ. (TR-While-L)
adds the label binding continue l into Γ, and (TR-Break) and (TR-Continue) checks it. The meaning of
relation ∈L is that if the continue l is allowed at some program points, break l is always allowed in Java
language.

super � Γ
Γ;∆ � ε : statement list

(TR-StmtListNil)

super � Γ Γ;∆ � l : statement list Γ;∆ � s : statement

Γ;∆ � s; l � statement list
(TR-StmtList)

super � Γ Γ∗, t x;∆ � l : statement list
Γ;∆ � t x;l : statement list

(TR-VarBind)

super ∈ Γ Γ;∆ � s : constructor call
Γ \ {super};∆ � l : statement list
Γ;∆ � s; l : statement list

(TR-ConstrBody-1)

super ∈ Γ super() ∈ Γ
Γ \ {super};∆ � l : statement list

Γ;∆ � l : statement list
(TR-ConstrBody-2)

Γ∗;∆ � l : statement list
Γ;∆ � {l} : statement

(TR-Block)

(The environment Γ∗ means the Γ with switch state flag cleared.)

Figure 2: Type judgement rules for DynJava (2): statement list

3.3 Alternative sub-context relations

The relation ≺C is defined to satisfy that if both Γ, ◦ � e : t and Γ ≺C Γ
′ are satisfied, Γ′, ◦ � e : t is satisfied.

If the all syntactic restrictions of the target language are fully written down as a form of type judgement on
context (Γ), and if the relation �C which satisfies the above relation, the typing system for dynamic code
fragments could be derived from the typing rules of base language, as shown in this paper. However, such
derived rules are sometimes not convenient for actual use.

For example, Java language requests that all variables must be properly initialized before its use, with
regard to all possible syntactic execution paths. That restriction can be introduced into DynJava’s typing
rule. However, if it is done, the typing rules become very complicated. Especially, the user must always
specify the correct state of variable initialization for every code specifications, which is hard to maintain.
We designed DynJava to avoid that difficulties by assuming and ensuring that the variables declared in the
code specifications are always initialized by default value (0 or null).

4 Implementation

In this section, we present our current implementation of the DynJava language. Our compiler system
consists of two parts: the language preprocessor and the code postprocessor, which utilizes Java’s original
compiler javac as a back-end code generator. This approach is similar to those of Tempo [2, 11].

Firstly, the language preprocessor reads the source code and type-checks the whole code. For each
code specification and expression specification, the preprocessor generates a code generator class, with a
template of dynamic code in the Java language. The template is then processed by the javac and compiled
into byte code. The code postprocessor reads the result of javac and translates it into Java program which
generates the bytecode on runtime compilation time.

The template contains the code very similar to the original code appeared in the specifications. For
example, the template generated from simple expression specification ‘int<>(5 + 3) is like following:

private void __template() { return (5 + 3); }

It is compiled into the bytecode which pushes the result of 5 + 3 onto the stack, which can be used
“verbatimly” in the dynamically-generated code. However, @- and $-expressions are not embeddable

Γ;∆ � e : boolean Γ∗, continue l;∆ � s : statement
Γ;∆ � l: while (e) s : statement

(TR-While-L)

break ∈L Γ

Γ;∆ � break; : statement
break l ∈L Γ

Γ;∆ � break l; : statement
(TR-Break)

continue ∈L Γ

Γ;∆ � continue; : statement

continue l ∈L Γ

Γ;∆ � continue l; : statement
(TR-Continue)

r ∈ L
r ∈L L

continue l ∈L L
break l ∈L L

break l ∈L L
break ∈L L

continue l ∈L L
continue ∈L L

Figure 3: Type judgement rules for DynJava (3): loop-related constructs

DynJava Source Code

Code
Specifi-
cations

Static
Part

Pre-
Processor

Post-
Processor

javac Runtime
Code

Generator

Dynamic
 Code

Template

Runtime
Code

Generator

javac

PostProcessor
(Merge)

Bytecode
Source code

Static
Part

Dynamic
 Code

Template

Static
Part

Static
Part

Figure 4: Process flow of DynJava compiler

into the template directly, and many other constructs like method invocation of current class, non-local
break/continue, etc. are the same. For such constructs, preprocessor generates some dummy constructs
into the implementation class, and translate those constructs into some javac-compatible code. The code
postprocessor knows about specific bytecode patterns generated from such “fake” constructs, and converts
them appropriately.

For example, for each @-expression a dummy method named __tn is generated, and the expression is
translated into the invocation of the dummy method. When the postprocessor finds the invocation of the
method named __tn, the postprocessor translates it into the nested invocation of runtime code generator
(Figure 5), rather than the invocation instruction itself.

When the user requests to generate a class and an instance from code specifications, the runtime system
invokes the code generator to produce bytecode, then asks Java’s classloader to load the generated class.
As Java’s bytecode architecture is stack-based, embedding some bytecode fragment into another will im-
plement semantics of @-expression almost automatically. However, as each template of code uses the slots
of local variables in its own way, naive merger of two codes will conflict with each other on the usage of
local variable. Our postprocessor and generated code generator counts the number of used slots at each

Code GeneratorsBytecode List

call
call

call

generate
instr.

@ @

@

return

Patterned bytecode fragments are generated by the code generator with corresponding patterns. The code generated by
inner code generator is embedded into code generated by outer one.

Figure 5: Nested code generator invocation by @-expression.

Table 1: Execution time of one FFT calculations and its code generation time

n 960 1024 2048 3600 6561 8192 10000 16384 30030 44100 65535 1048575
#factors 8 10 11 8 8 12 8 13 6 8 3 6
TDynamic 2.11 2.16 4.23 7.85 15.08 24.95 25.7 53.40 97.0 130.1 899.2 6051

TJIT 2650 4153 5270 2296 2275 7909 2270 9366 1261 2298 694 1179
TStatic 2.15 2.39 5.19 8.34 13.90 25.64 25.2 56.96 82.3 136.5 878.0 5915

[unit: milliseconds]

embed point and shifts the slot numbers used by inner code fragment to unused ones.
Currently, preprocessor is implemented as a plug-in for EPP [8], an extensible Java preprocessor pack-

age. Postprocessor and runtime code generator is implemented using JavaClass [4], a library for bytecode
manipulation. As runtime code generator should run very fast to minimize code generation cost, we are
planning to re-implement the code generator using more light-weight methods.

5 Evaluation

To evaluate the performance of DynJava implemented dynamic code, we implemented a runtime optimizer
for fast Fourier transform (FFT). FFT calculates the discrete Fourier transform (DFT) of size n in the
computational order less than O(n2). There are many known algorithm to optimize the calculation of
DFT [6], but all of them are depending on the size n.

Our prototype optimizer implements the Cooley-Tukey fast Fourier transform [3], along with a naive
DFT routine. The Cooley-Tukey algorithm is applicable when the size n is factored into n1n2, and reduce
the DFT calculation to small DFT calculations of size n1 and n2. If n is factored into more than 2 prime
numbers, the algorithm can be applied recursively. Our optimizer factors n into primes and generates a
specialized method in which the all nested DFT calculations are inlined. We also implemented a routine
which implements the same algorithm using an object for representation of nested DFT calculations and
compared the performance.

Table 1 shows the calculation time for DFT of various sizes. Experiments are done on the IBM build
of JDK 1.3.0, running PentiumIII at 500MHz. The data shown as TDynamic are the execution time of
dynamically-generated code, and TStatic are those of the routine using object representation. TJIT is the

times expensed for JIT compilation, which are guessed by the difference between the times consumed by
the first invocation and other invocations. When n has many small factors, especially 2, the dynamically-
generated code runs significantly faster than static one. The times consumed by JIT compilation roughly
depends on the number of factors, and it is around 2.3 seconds for various n with 8 prime factors, and 9.3
seconds when n = 16384 = 214.

6 Related Work

There are many tools which manipulates bytecode, for example JavaClass API [4], and gnu.bytecode
package included in Kawa Scheme [1], and they can be directly used to generate execution code dynami-
cally on Java Virtual Machine (JVM). However, as those tools treat a dynamically generated program as a
stream of untyped instructions, the user could generate type-unsafe code. Keeping safety of the generated
code completely owe to the user’s responsibility, and generally it is very hard to maintain.

‘C [11] is an extension to C language which supports writing dynamic code in the syntax of C language.
In ‘C, user writes fragments of dynamic code and combine them to generate a function in C language at
runtime. However, as ‘C does not support any context, type safety of the generated code is still not guar-
anteed enough. For example, two code fragments ‘{return 5;} and ‘{return "string";} cannot
co-exist in one function, but as these two specifications are both typed “void cspec” in ‘C, the incon-
sistency is not detected. Our DynJava can detects those inconsistency at compilation time using context
information. In addition to this, in ‘C users must write a special construct explicitly to use variables or
labels across two or more code fragments, and must maintain the consistency of them carefully. DynJava
provides easier way to share one variable between two specifications than one provided by ‘C.

Another approach to generate code dynamically in a type-safe way is a runtime specialization tech-
nique, that uses program analysis. For example, the second and third authors describes about runtime
program specialization on Java bytecode [9], and many related publications on this topic exist. Since
this approach extracts dynamic code fragments from a given single-level program, specialized program is
always type-safe. However, degree of optimizations (specialization) depends on the preciseness of the anal-
ysis. If the target program is simple, full-automatic analysis is sufficient produce a good result. However,
if the program gets complicated, the program author will have better knowledge about program’s property
and where to optimize than the automatic analyzer. In this case, our DynJava will become a powerful tool
to implement program-dependent runtime optimization easily by hand.

There are studies on of type safety of dynamic program composition. Modal-ML [12] is one of such
studies on the functional language ML. Due to simple syntax and semantics, restriction on a correct context
for a dynamic code fragments can be easily checked by matching types of all free variables. However, in
imperative languages such as Java, context should have more precise information to determine the cor-
rectness, because a program fragment depends not only on the types of free variables, but also various
information such as labels and exceptions. Our type system is extended to handle these properties and
ensures the correctness of composition in an imperative language.

MobileML [7] defines type system for dynamically-bound code fragments on the ML language, using a
notion of context. The base idea of context type checking in DynJava is inspired by Mobile-ML. However,
its context notion binds only variables, because of the same reason as Modal-ML.

7 Conclusion

We presented a strongly typed language that supports dynamic code generation. The user can write dy-
namic code fragments using high-level language constructs. By introducing a context which holds various
syntactic information as well as variable bindings, DynJava’s type system statically guarantees the type-
safety of that dynamically composed code fragments. Our current implementation demonstrates that the
system can be used to easily implement dynamic optimization of a FFT program.

Acknowledgments

We are thankful to Dr. Naoki Kobayashi and Dr. Kenjiro Taura for many valuable suggestions on this
research.

References

[1] Per Bothner. Kawa—compiling dynamic languages to the Java VM. In USENIX, New Orleans, June
1998.

[2] Charles Consel and François Noël. A general approach for run-time specialization and its application
to C. In Proceedings of the ACM Symposium on Principles of Programming Languages (POPL ’96),
pages 145–156, St. Petersburg Beach, FL, USA, January 1996.

[3] James W. Cooley and John W. Tukey. An algorithm for the machine computation of the complex
Fourier series. Mathematics of Computation, 19:297–301, 1965.

[4] Markus Dahm. Byte code engineering with the JavaClass API. Technical Report B-17-98, Institut
für Infomatik, Freie Universität Berlin, 7 July 1998.

[5] Dawson R. Engler. VCODE: A retargetable, extensive, very fast dynamic code generation system.
In Proceedings of the ACM SIGPLAN ’96 Conference on Programming Language Design and Imple-
mentation (PLDI), pages 160–170, Philadelphia, PA, USA, May 1996.

[6] Matteo Frigo. A fast Fourier tranform compiler. In Proceedings of the ACM SIGPLAN ’99 Conference
on Programming Language Design and Implementation (PLDI), pages 169–180, Atlanta, GA USA,
May 1999.

[7] Masatomo Hashimoto and Akinori Yonezawa. MobileML: A programming language for mobile
computation. In Proceedings of the 4th International Conference on Coordination Languages and
Models (COORDINATION 2000), number 1906 in Lecture Notes in Computer Science, pages 198–
215. Springer-Verlag, 2000.

[8] Yuuji Ichisugi. Epp homepage. http://www.etl.go.jp/~epp/.

[9] Hidehiko Masuhara and Akinori Yonezawa. Run-time bytecode specialization: A portable approach
to generating optimized specialized code. In Olivier Danvy and Andrzej Filinski, editors, Second Sym-
posium on Programs as Data Objects (PADO II), In Lecture Notes in Computer Science. Springer-
Verlag, Aarhus, Denmark, May 2001. To appear.

[10] Yutaka Oiwa. A Java-based language with type-safe dynamic-code generation. Master’s thesis,
Graduate School of Science, the University of Tokyo, February 2001. to appear.

[11] Massimiliano Poletto, Wilson C. Hsieh, Dawson R. Engler, and M. Frans Kaashoek. ‘C and tcc: A
language and compiler for dynamic code generation. ACM Transactions on Programming Languages
and Systems (TOPLAS), 21(2):324–367, March 1999.

[12] Philip Wickline, Peter Lee, and Frank Pfenning. Run-time code generation and modal-ML. In the
ACM SIGPLAN ’98 Conference on Programming Language Design and Implementation (PLDI),
pages 224–235, 1998.

